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Some of the most significant applications of recursive function

theory have been those made to decision problems arising in other

areas of maLhematic.q. For e::ample, Novikoff ald Boone demonstrated

independently thaL the word problem ror groups is recursively un-

solvable. Since about 1950, continuing attempts have been made to

prove that Hilbert's tenth problem is unsolvable, that Is, that no

algorithm exists for determining whether an arbitrary polynomial

with integer coefficients has a root in integers. In this Memorandum,

which is the result of such an attempt, it is shown that if a certain

single diophantine equation has no non-trivial solutions, thcn Hilbert's

tenth problem is unsolvable.

The author wishes to acknowledge helpful discussions with Robert

DiPaola, Oliver Gross, Hilary Putnam, Norman Shapiro, and Joel Spencer.

The ideas of Section 3 are from unpublished joint work with Hilary

Putnam done during the summer of 1962. j
Professor Martin Davis, a consultant, is on the faculty of New

York University.

This material is referred to as "Proposition 2" in 1.4]. As
stated, the "proposition" requires the following correction: Replace
"p

2  + .82 by "a (' 2  + a, 2)

I
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SUW4ARY

It is shown that if a particular exhibited diophantine equation

has no non-trivial solutions, then Hilbert's tenth problem is recur-

sively unsolvable.

Let H stand for the assertion:

Thw oqu4ion

9(u 2 + 7v 2) 2 - 7(r 2 + 7; )2 = 2 (*)

has no soZution in non-negative integers except the tzivial u - r - 1r

v - a - 0.

The truth of 4 must be left open; however, in this study it is

proved that

H implies that there is no uniform algoritnhm for testing poly-

nomial diophantine equations for sotvabilty in positive integers,

i.e., that Hilbert's tenth p-oblem is unsolvable.

As will be seen, the methods used in this study yield a result

considerably stronger than tne statement above. These methods can

be readily adapted to obLain various other hypotheses about which

demonstrations can be made similar to that for U. The Memorandum

concludes with a report on numerical calculations (jome using the

JOSS* system) made in a search for counterexamples to 1/.

See Chapter 7 of 111, (31, 14i, 15], and 161.
JOSS is the trademark and service mark of Thie RAND Corporation

for its computer program and services using that program.
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NE EQUATION TO RULE THEM ALL

1. IMrRODlCT TON

notics. Tne tenth problem of this series, which has come to be known

as "Hilbert's tenth problem," is one of several remaining Hilbert

problems that have resisted the intense efforts of mathematicians

everywhere. It reads:

10. Entscheidung der ULiTarkeit eirner diophantischen
Gleichung.

T-ine diophantische Gleichung mit irgendwelchen
Unbekannten und mit ganzen rationalen Zahlkoeffiziensten
sei vorgelegt; nan soll ein Verfahren angeben, nach
weichen sich inittels einer endlichen Anzahl -,on Operationen
entscheiden l~sst, ob die Gleichung in ganzen rationalen
Zahlen Idsbar ist.*

Given the failure of mathematicians to develop a general thvory

of diophantine equations, the modern theory of recursive functions

suggests a "solution" to Hilbert's tentli problem which is radically

different from any that could have been envisaged in 1900, namely, that

the problem of finding such an algorithm is in a fundamental tsense

The Introduction was prepared by membhers~ of The RAND :.xi-poratton
staff .

* 10. Determining the snlvability of a diophantine
equation.

Let a diophantine equation with an arbitrary number
of unknowns and with integer coefficients be gi4ven; a
procedUre is desired such that by means of a f In1ite
number of operations it Call h0- dICcided whether the
equation has a solution in integers.
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Memorandum proves that if a certain specific diophantine equation has

no non-trtIvial integral solutions , then HIlLbert's tenth problem is

unsolvable in the above sense.

1,, place this Mieordndum in context, a brief review of the previous

work done towaird establishing the unsolvability of the problem is in

order. Post (101 wab the first to formu1ate Hilbartr', MiLh prteil 7

as a decision problem of a recursively enumerable set. The author t2]

proved that every recursively enumerable relation can be represented

in the form V A "',XIIX2 '' 1 )Y
P -0

where ) is a diophantine predicate, that is. a polynomial equatioi pre-

fixed by a block of existential quantifiers. Hence there are recursively

iniolvable problems of this form, and if it were known that the class

of diophantine predicates is closed under bounded universal quantifica-

tion, a proof would follow that Hilbert's tenth problem is unsolvable.

In a paper which has remained basic to later research, Julia

Robinson 1 I1 investigated the relation between diophantine predicates

and predicates of (roughly speaking) exponential order of growth. This

paper suggested the consideration of the decision problem for exponen-

tial diophantine equations, that is, for those diophantine equations in

which the exponents appearing in polynomials are treated as variables,

Research on this problem culminated in [3], where it was shown that all

it is interesting that Hilbert emphasized the possibility that,

as with the famous construction problems of Greek mathematics, the
solution to a problem is in terms which could not have been imagined
by the proposer of the prolem.
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recursively ellumcrable Sets are exponential dtophantine, and that

| therefore the decision problem for exponential dfopb;4t1r1nez equations

t6--in a .scnu precise Lo recur~tvs, function thetrist-s--of the highes;t

dcgree o~f uiaulvability for decision proe;Joms about recursively

enumerable sets.

There also stemmed from I III thL following IiypuLhtesiS, which

has lome Lo be known as I.H.: There is a diophantine predicate of

exponential order of growth, in the sense of [11J. It follows from

15] that J.R. implies that all recursively enumerable sets are dio-

phantine and hence that Hilbert's tenth problem is unsolvable. Most

of the recent work on the problem has been devoted to estab'ishing

J.R. This Memorandum falls into this category, since it proves that

if a particular diophantine equation has no non-trivial solutions,

then J.R. holds.

2. SOME PROPERTIES OF SOLUTIONS OF VIE I'l.L EQUATION x -, 1

Below, 1' is always a prime number.

Letnma "f , " " .. " "

x 2 7,y' 2; (."O' 1: 0) ,:.,

+ ." , (8 +

Proof, By Theorem 104 of 191, we have

+ , (t + '

Moreover, we may caloulate .x , ."I from th- fact that is the It,:ist

y for which I + 7! is a square and r %r, 7., his gives -

3.
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Ierdgii 2. (x, ! ) - °

Trout.2 2I
____ xa and 'i YI implies d (x 7- h i !I

'I 'I
.,emma 3. J'h,' ' ;o-n , i un are 1o h rozut ? Of o the t 'oold-

oP,.Ler ,d f.'.'no" .' a.i~

Un4-2 " 16?n+1 U ?I

Proof. Let 9 - 8 + 3v7, ' - 8 - 3v7. Then, 0 + 0' - 16,

110' - 1, so that -2 166 + w 0. Hence a?+ 2 - n+ l + 6 n 0.

That is,

x n+2 + 9 n+2 7 - 16(xriel + Yn+ - (xn + Yn /77)

Lemma 4. For n odd, x is evcn and y. is odd. For n even,

Za odd and y io even.

Proof. The regult is clear by inspection for n - 0, 1.

It foliv:s, in general, since Lemma 3 implies that

+ - (mod 2), y - (mod 2).

Lemma 5. 2n (xn) 2 + 7(yn )  y2n " 2xnn'

Proof.

x -(x+ Yr)2,(2 +72) xy4

2n + y2r 7) n n n n n

Lemma 6. Let n - 2 k, m > 0. Then,

Yn 2m X'q 11 x2 L
n Xk'k O<i<m 2 .k

Proof. For m - 1, the result ia given by Lemma 5. Proceeding

by induction (and using Lemma 5),



I

21±4: ' 4 2' ~ 'X~,I 11 x

- 2 2'" ();', 2 o'

txrna 7.

= m + 3 ! 2 1i

I x.Y2' P?. o-, , 

Prouf. Take -, 1 in Lerua 6.

Lemma 8. 3 1!

Proof. This is true for n = 0, 1, and hvnc'e by iLmma 3 must be

true for all n.

Letwma 9. 12k+1 " (k + 7yk)(Xk + 3Yk)

Proof.

x2k+1 + Y2k+1 ¢- (xk + Yk /7)2(8 + 3 V7)

- ((x2 + 7y2) + 2zkk r)(8 + 3 7)

Hence,

2 2
y2k4-1 " 3xK + 16xkY k + 2Iy k

- (3xk + 7Y) (Xp ;* 3Y k )

Lemma 10, (3k + 7yk, Xk + 3yk) -

Proof. If p I 3xk + 7Yk, P I xk + 3zk, then since 3 (xk + 3yk)

(irk + - 2Yk, either p - 2 or r I yk. But by Lemma 4, Xk and

have opposite parity, so p 2. Hence , I "',, and therefore

p I ((xk + 3 ,) - 3y, i.e., p I xk which contradicts Lemma 2.

..
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3. REPRESENTABLE NUMBERS

A positive integer x will be called reprPoentabZe if thcrc are

non-negative integers u, o, such that x 2 + 7V2. As iG well known,

the product of representable numbers is representable. (Namely, if

x a a ZT, y - 8 a, + V /77 , 8 - r + a /' 7, then xl - (a ) (' ).

Lemma II. 2m is representable if m ' 2.

2k k2
Proof. For m - 2k, k 2 0, we have 2 - (2 )2 + 7 • (0) If

m is odd, m ? 2, then m - 2k + 3, k 0. Hence 2 - 2 k  8, which

22
is the product of representable numbers since 8 - (1) + 7 • (1)2.

We shall call an odd prime p poison if p = 3, 5, or 6 (mod 7)

and non-poison if p : 1, 2, or 4 (mod 7). t Note that every odd prime

p * 7 is either poison or non-poison, but that 2 is neither.

The following two lenmmas are immediate consequences of exercises

9 and 10 on page 81 of [7).

Lemma 12. If there is a poison prime dividing x to an odd power,

then x is not representable.

Lemma 13. If x is odd and is nct representable, then there i3

a poison prime whiich divides x to an odd power.

We thus find, recalling Lemma 8,

Lemma 14. For aZl m, y m/3 is representable.

Proof. By Lemma 5, x 0 < i < m is representable for each i.

By Lemma 11, 2m + 3 is representable. The result follows at once from

Lertna 7.

Lemma 15. If n - 2 .k, k, m > 0, k is odd and y n/3 is representable,

then Yk/ 3 is representable.

Proof. Suppose Yk/3 were not representable. by Lemmas 4 and 13

Of course the "non-poison" prin1 are just the odd primes which
are quadratic residues mod 7.



there i± a poiaun urimc p which diviaes yk/ 3 to an odd power. S!4iue

by Lemma 5 each x , 0 < i < m is representable, Lemma 12 implies

that p divides each of these numbers to an even (perhaps 0) power.

Moreover p 1 2m and, by Lemma 2. p I x.. So, by Lenuna 6. p divides

Yn/3 to an odd power, which by Lemma 12 contradicts the hypothesis.

Lemma 16. If Y2k+1/ 3 ic presentable, so are x k + 7(yk/3) and

xk + 3yk .

Proof. The result follows at once from Lemmas 8, 9, 10, 13, and

14.

Finally, we obtain:

Theorem 1. If for some n > 0 not a power of 2, yn/3 i8 repre-

sentabZe, then the system of diophantine equations

X2 - 63Y 2 . I

2 2X + 7Y - u + 7v

X + 9Y - r 2 + 7s 2

has a non-negative integer sot 'in for which Y x 0.

Proof. By Lemmas 15 and I the hypothesis implies there are

representable numbers xk + 7 (yk /3), Xk + 
3Yk, k > 0. Setting X -

Xk, Y - yk/5, we have numbers u, v, r, s with

2 2
X + 7Y - u + 7v

2 2X + 9Y - r + 7s

Moreover,



X - 63Y2 -x - 63(yk/3)

2 2

k  k

Corollary. If for some n 0 not a power of 2, y n/3 io repre-

sentable, then our equation (*) 1has a non-trivial solution.

Proof. Let X, Y be as in Theorem 1. Then,

9(u 2 + 7v2 ) 2 7(r 2 + 7s 2) 2

- 9(X2 + 14XY + 4912) - 7(X2 + 18Xy + lY2 )

- 2(X2 - 63Y )

-2.

Combining the Corollary with Lemma 14, we obtain:

Theorem 2. H implies that yn/3 is represen..able for n > 0 if

and only if n is a power of 2.

Corollary. H implies that (y2m} is a diophantine set. $

Proof. By the Theorem:

y 2 _y2m}  y (3 u. v, x)Cx2 - 2 , I & y -3(u 2 + 7v 2

4. A DIOPHANTINE SET OF EXPONENTIAL GROWTH

We begin by deriving some inequalities which show that yn grows
nf

exponentially with n.

'This simple calculation was sugges'ed by Oliver Gross.

See Chapter 7 of [l.

I
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Lemma J 7. y 3xn +

Proof. x + / " (x + Y ? 17)(8 + 3 v7), which gives the

result.

Lemma 18. For n I, 8y n < Yn+l < 16gn

Proof, Use Lemmas 3 and 17.

Lemma 19. For n f- 1, 3 • 8 Yn 3 • 16

Proof. Follows by induction from Lemna 18.

We shall write GPT(m) for the largest power of 2 which divides

m; e.g., GFT(5) - 1, GPT(12) - 4.

Lemma 20. a ? GPTMb) is a diophantine predicate.

Proof.

a - GPT(b) .-- (Sx. y)[b - y(2x + 1) & a 2 y]

In what follows we write

e(m, n)*-. (3 x)[n a & n > 16 & Y

Lemma 21. For each k > 0, there are m, n such that p(m, n) and

km n.

r-1 kProof. Given k > 0, choose N such that r > N implies 8 r

Let n be any power of 2 greater than both N and 16 and let m - y.

Then, p(n, m) is true, and

M Y n

3 • 8" 1

k
> fi

Lemma 22. P(m, n) impZies m ' .

Proof. o(m, n) implies



my z
2

3 16

< n
<nf,, i

since n > 16.

Finally, we note the relationship:

Lemma 23.

0(m, )--m {y 2 x} & n/8 2 GPT(m) & n > 16.

x3
Proof. By Lemmas 4 and 7, GPT(y x) 2x+

2
Theorem 3. H implies that there is a diophantine predicate

o(m, n) such that

1. For each k 5 0, there are m, n such that p(m, n) and m > n ;k

2. p(m, n) implies m < n

Proof. This follows at once from the Corollary to Theorem 2,

together with Lemmas 21, 22, and 23.
j

Corollary. H implies that every recursively enwnerable set is

diophantine, and therefore ihat Hilbert's tenth rtrobZem is unsoZvable.

Proof. For, our Theorem 3 yields precisely the well-known con-

ditions of Julia Robinson [l].t

5. SOME NUMERICAL CALCULATIONS

Let us first note:

t In particular see [3], p. 430, Corollary 3.



I -11-I

Lemma 24. H1 ie cqulualcnt to tic aaarrt ion that y 2+i/3 isf I
Proof. Immediate from The-'rem 2 and Lemma 15.

The numbers -.,,+, grow much too rapidly for direct computation

to be feasible, Our procedure was to note that the factors k +

7(,,,13), x, + 3iik of 2'+1 /3 both satisfy the same second-order

difference equation ('+2 = 16 • +1 - ) alre3dy employed. Hence,

we used JOSS to generate these factors mod r for various primes p to

check for the presence of poison prime factors. Our calculations

showed that yM/3 L not rep easeztatle foP all o4- " ! 69. For 71/3,

JOSS was used to find the factorization

x35 + 3Y35 - 569 , 12497 • 14767 • 1234>. 3109540897423342896942089.

No factors were found for

x35 + 7(y35 /
3 ) - 1142990785309671374389914316797599035684321.

None of the primes 569, 12497, 14767 are poison. However, John

Selfridge has reported a computation on an IBM 7090 at UCLA showing

that both of the large remaining factors are corror'tc. However, he

reports that the smaller of these has no factor . * 109, and the

larger no factor < 3 
- 106

The decimal representations of the two very large numbers listed
were found by Joel Spencer, using JOSS.

tOral communication.

IJ
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